![]() |
ROC SDK
2.4.0
Scalable Face Recognition Software
|
Measurement of resemblance between two templates. More...
Macros | |
| #define | ROC_MAX_SIMILARITY (1.f) |
| Maximum roc_similarity. More... | |
| #define | ROC_MIN_SIMILARITY (0.f) |
| Minimum roc_similarity. More... | |
| #define | ROC_INVALID_SIMILARITY (-1.f) |
| An invalid roc_similarity. More... | |
| #define | ROC_DEFAULT_SEARCH_THRESHOLD (0.65f) |
| Default search roc_similarity threshold. More... | |
| #define | ROC_DEFAULT_VERIFICATION_THRESHOLD (0.55f) |
| Default verification roc_similarity threshold. More... | |
| #define | ROC_CONVENIENT_SPOOF_THRESHOLD (0.45f) |
| Default spoof threshold. More... | |
| #define | ROC_SECURE_SPOOF_THRESHOLD (0.3f) |
| Spoof threshold for high security deployments. More... | |
Typedefs | |
| typedef float | roc_similarity |
| A measurement between two faces quantifying the pseudo-probability that they are the same person. More... | |
Functions | |
| roc_error | roc_fuse (roc_similarity *raw, size_t n, roc_similarity *fused) |
| Score-level fusion by computing a max. More... | |
Measurement of resemblance between two templates.
See roc_similarity for details.
| #define ROC_MAX_SIMILARITY (1.f) |
Maximum roc_similarity.
This is the highest valid similarity score and indicates the two templates have identical feature vectors.
| #define ROC_MIN_SIMILARITY (0.f) |
Minimum roc_similarity.
This is the lowest valid similarity score and indicates a strong non-match.
| #define ROC_INVALID_SIMILARITY (-1.f) |
An invalid roc_similarity.
This value indicates that at least one of the two templates involved in the comparison does not have a feature vector.
| #define ROC_DEFAULT_SEARCH_THRESHOLD (0.65f) |
Default search roc_similarity threshold.
| #define ROC_DEFAULT_VERIFICATION_THRESHOLD (0.55f) |
Default verification roc_similarity threshold.
| #define ROC_CONVENIENT_SPOOF_THRESHOLD (0.45f) |
Default spoof threshold.
Approximately equal error rate between false accepts and false rejects.
| #define ROC_SECURE_SPOOF_THRESHOLD (0.3f) |
Spoof threshold for high security deployments.
Fewer false accepts but more false rejects.
| typedef float roc_similarity |
A measurement between two faces quantifying the pseudo-probability that they are the same person.
A larger value indicates a greater similarity. Similarity is measured between the Feature Vector component of two templates without consideration of any other potential sources of information. Similarity scores range from 0.0 to 1.0 where 0.0 represents a strong non-match and 1.0 represents identical templates.
We recommend using ROC_DEFAULT_SEARCH_THRESHOLD or ROC_DEFAULT_VERIFICATION_THRESHOLD and adjusting higher or lower depending on the tolerance for false matches versus false non-matches.
The following tables list empirically measured error rates for common scenarios. The true error rates for a given similarity threshold vary significantly across datasets. Customers are strongly encouraged to pick a similarity threshold based on an accuracy evaluation of their production data.
Examples: driver's licenses, passports, mugshots and visas.
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-2 | 0.352 | 0.0001 |
| 1e-3 | 0.470 | 0.0004 |
| 1e-4 | 0.576 | 0.001 |
| 1e-5 | 0.668 | 0.002 |
| 1e-6 | 0.760 | 0.005 |
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-2 | 0.322 | < 0.0001 |
| 1e-3 | 0.426 | 0.0001 |
| 1e-4 | 0.523 | 0.0002 |
| 1e-5 | 0.611 | 0.0005 |
| 1e-6 | 0.692 | 0.0013 |
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-2 | 0.358 | 0.005 |
| 1e-3 | 0.464 | 0.013 |
| 1e-4 | 0.562 | 0.027 |
| 1e-5 | 0.648 | 0.048 |
| 1e-6 | 0.729 | 0.078 |
Examples: selfies, ID document scans, social media, photo journalism and webcams.
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-2 | 0.126 | 0.0004 |
| 1e-3 | 0.232 | 0.0009 |
| 1e-4 | 0.336 | 0.002 |
| 1e-5 | 0.447 | 0.005 |
| 1e-6 | 0.540 | 0.01 |
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-2 | 0.115 | 0.0001 |
| 1e-3 | 0.208 | 0.0004 |
| 1e-4 | 0.304 | 0.0006 |
| 1e-5 | 0.401 | 0.0013 |
| 1e-6 | 0.489 | 0.0022 |
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-2 | 0.140 | 0.005 |
| 1e-3 | 0.256 | 0.014 |
| 1e-4 | 0.361 | 0.04 |
| 1e-5 | 0.459 | 0.07 |
| 1e-6 | 0.550 | 0.12 |
Examples: law enforcement booking image.
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-2 | 0.158 | 0.008 |
| 1e-3 | 0.272 | 0.024 |
| 1e-4 | 0.364 | 0.049 |
| 1e-5 | 0.450 | 0.092 |
| 1e-6 | 0.530 | 0.161 |
Examples: Object tracking
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-1 | 0.335 | 0.313 |
| 1e-2 | 0.447 | 0.700 |
| 1e-3 | 0.529 | 0.906 |
| 1e-4 | 0.560 | 0.968 |
Examples: Fingerprint cards
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-1 | -0.038 | 0.0038 |
| 1e-2 | 0.399 | 0.0062 |
| 1e-3 | 1.415 | 0.0073 |
| 1e-4 | 1.835 | 0.0075 |
| 1e-5 | 2.243 | 0.0077 |
| 1e-6 | 3.203 | 0.0080 |
| False Match Rate | Similarity Threshold | False Non-Match Rate |
|---|---|---|
| 1e-1 | 0.078 | 0.0045 |
| 1e-2 | 0.961 | 0.0053 |
| 1e-3 | 1.247 | 0.0056 |
| 1e-4 | 1.921 | 0.0066 |
| 1e-5 | 2.878 | 0.0084 |
| 1e-6 | 5.924 | 0.0447 |
The following functions all measure similarity in the same way, but offer interfaces tailored to different use cases.
| Function | Description |
|---|---|
| roc_compare_templates | Measure the similarity between two templates. |
| roc_compare_galleries | Measure the pairwise similarity between all templates in two galleries. |
| roc_search | Ranked search for a probe template against a gallery of templates. |
| roc_knn | Construct the k-nearest neighbors graph of a gallery. |
| roc_error roc_fuse | ( | roc_similarity * | raw, |
| size_t | n, | ||
| roc_similarity * | fused | ||
| ) |
Score-level fusion by computing a max.
Use this function when you've made multiple comparisons involving the same identity and wish to derive a single consolidated similarity score.
| [in] | raw | Similarity scores with which to perform score-level fusion. |
| [in] | n | Length of raw. |
| [out] | fused | Combined similarity score. |
1.8.15